ФАНТАСТИКА

ДЕТЕКТИВЫ И БОЕВИКИ

ПРОЗА

ЛЮБОВНЫЕ РОМАНЫ

ПРИКЛЮЧЕНИЯ

ДЕТСКИЕ КНИГИ

ПОЭЗИЯ, ДРАМАТУРГИЯ

НАУКА, ОБРАЗОВАНИЕ

ДОКУМЕНТАЛЬНОЕ

СПРАВОЧНИКИ

ЮМОР

ДОМ, СЕМЬЯ

РЕЛИГИЯ

ДЕЛОВАЯ ЛИТЕРАТУРА

Последние отзывы

Невеста по завещанию

Очень понравилось, адекватные герои читается легко приятный юмор и диалоги героев без приторности >>>>>

Все по-честному

Отличная книга! Стиль написания лёгкий, необычный, юморной. История понравилась, но, соглашусь, что героиня слишком... >>>>>

Остров ведьм

Не супер, на один раз, 4 >>>>>

Побудь со мной

Так себе. Было увлекательно читать пока герой восстанавливался, потом, когда подключились чувства, самокопание,... >>>>>

Последний разбойник

Не самый лучший роман >>>>>




  4  

Рис.1. Эволюция протопланетного облака (схема)


На определенной стадии появился «зародыш» нашей планеты (протопланета), который стал «вычерпывать» пыль в своем районе. Зародыш Земли по своим размерам не превышал Луну. А твердые тела в протопланетном облаке достигли линейных размеров порядка десятков километров. Можно представить, что происходило при столкновении десятикилометрового тела (камня!) с зародышем Земли при скорости порядка 10 километров в секунду! Большая часть падающего тела просто испарялась при ударе, но масса зародыша была достаточно большой, и вещество не могло улететь в космическое пространство. Зародыш увеличивался, постепенно наращивая свою массу. Кстати говоря, впервые именно Шмидт высказал мысль о том, что ударные процессы могли положить начало образованию атмосферы и океана еще до того, как закончилось формирование Земли.

Рис.2. Молодая планета в протопланетном облаке


Сколько же времени мог занять процесс образования Земли? Здесь мнения ученых сильно расходятся: одни называют промежуток времени в 100 миллионов лет, другие – в 1000 лет.

Гипотеза Хойла так и оставалась бы гипотезой, существующей наравне со многими другими, однако новые методы наблюдений и принципиально новые инструменты позволили современным астрономам своими глазами увидеть протопланетные диски у молодых звезд.


«Семена жизни»

Ученые уже неплохо представляют себе, как формируются планеты и планетные системы. Однако важно еще и понять, на какой стадии эволюции небесных тел начинается эволюция жизни, в какой момент происходит ее зарождение.

Гипотезу о том, что «зародыши жизни» существуют везде во Вселенной и время от времени выпадают на планеты, первым сформулировал шведский химик и один из первых лауреатов Нобелевской премии Сванте Аррениус. Он назвал такой путь возникновения и развития жизни на планетах «панспермией».

Критику эта гипотеза вызывала прежде всего тем, что в ней не давалось ответа на вопрос о происхождении самих зародышей. Тем не менее в ХХ веке она начала подтверждаться. При исследовании радиоастрономическими методами газопылевых облаков в Галактике в них было обнаружено несколько типов органических соединений. Такое открытие тем более удивительно, что раньше в газопылевых облаках предполагалось лишь присутствие водорода и некоторого числа двухатомных соединений.

В качестве примера рассмотрим типичное плотное облако, которое изучено лучше всего – молекулярное облако Туманности Ориона. Это скопление газа и пыли в «мече» Ориона имеет массу, равную миллиону солнечных масс. Большая часть вещества в облаке находится при температурах всего лишь на несколько десятков градусов выше абсолютного нуля. Но в некоторой части этого огромного облачного комплекса плотность вещества так велика, что в ней недавно образовались и начали светить звезды. Возраст этих звезд – несколько сотен тысяч лет, то есть они намного моложе типичных звезд вроде нашего Солнца, возраст которого измеряется несколькими миллиардами лет.

В Туманности Ориона мы видим не только юные звезды, но и области, где звезды еще не образовались, – они рождаются сейчас или «появятся на свет» в ближайшие десятки или сотни тысяч лет. В этих областях концентрации вещества составляют миллиарды частиц в 1 см3– такие концентрации чрезвычайно благоприятны для образования сложных молекул. Вот и в молекулярных облаках Туманности Ориона земные астрономы уже обнаружили более 130 различных типов органических молекул: от простых молекул окиси углерода СО и циана CN до таких сложных, как молекула этилового спирта С2Н5ОН.

Внимание прежде всего привлекают крупные молекулы. Хотя они не так распространены, как простые, но зато гораздо ближе к сложным молекулам, встречающимся в живых организмах. Такие молекулы, как метиламин СН32, являются звеном в формировании простейших аминокислот. Конечно же, аминокислоты – это еще не живые организмы, но это кирпичики, из которых складывается белок, являющийся основой известной нам жизни.

Простейшая аминокислота, глицин (С2H5О2N), содержит 10 атомов. Следующая по сложности, аланин (С3Н7О2N), – 13 атомов. Другие аминокислоты содержат от 14 до 26 атомов. Как мы видим, большинство атомов в них – это водород, углерод, азот или кислород, хотя встречается и сера.

  4