ФАНТАСТИКА

ДЕТЕКТИВЫ И БОЕВИКИ

ПРОЗА

ЛЮБОВНЫЕ РОМАНЫ

ПРИКЛЮЧЕНИЯ

ДЕТСКИЕ КНИГИ

ПОЭЗИЯ, ДРАМАТУРГИЯ

НАУКА, ОБРАЗОВАНИЕ

ДОКУМЕНТАЛЬНОЕ

СПРАВОЧНИКИ

ЮМОР

ДОМ, СЕМЬЯ

РЕЛИГИЯ

ДЕЛОВАЯ ЛИТЕРАТУРА

Последние отзывы

Слепая страсть

Лёгкий, бездумный, без интриг, довольно предсказуемый. Стать не интересно. -5 >>>>>

Жажда золота

Очень понравился роман!!!! Никаких тупых героинь и самодовольных, напыщенных героев! Реально,... >>>>>

Невеста по завещанию

Бред сивой кобылы. Я поначалу не поняла, что за храмы, жрецы, странные пояснения про одежду, намеки на средневековье... >>>>>

Лик огня

Бредовый бред. С каждым разом серия всё тухлее. -5 >>>>>

Угрозы любви

Ггероиня настолько тупая, иногда даже складывается впечатление, что она просто умственно отсталая Особенно,... >>>>>




  104  

Сегодня принято считать, что Пифагор дал первое доказательство носящей его имя теоремы. Увы, от этого доказательства также не сохранилось никаких следов. Поэтому нам ничего не остается, как рассмотреть некоторые классические доказательства теоремы Пифагора, известные из древних трактатов. Сделать это полезно еще и потому, что в современных школьных учебниках дается алгебраическое доказательство теоремы. При этом бесследно исчезает первозданная геометрическая аура теоремы, теряется та нить Ариадны, которая вела древних мудрецов к истине, а путь этот почти всегда оказывался кратчайшим и всегда красивым».

Теорема Пифагора гласит: «Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах». Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы.

Во II веке до нашей эры в Китае была изобретена бумага и одновременно начинается создание древних книг. Так возникла «Математика в девяти книгах» — главное из сохранившихся математико-астрономических сочинений. В IX книге «Математики» помещен чертеж, доказывающий теорему Пифагора. Ключ к этому доказательству подобрать нетрудно. В самом деле, на древнекитайском чертеже четыре равных прямоугольных треугольника с катетами и гипотенузой. С уложены так, что их внешний контур образует квадрат со стороной А+В, а внутренний — квадрат со стороной С, построенный на гипотенузе. Если квадрат со стороной с вырезать и оставшиеся 4 затушеванных треугольника уложить в два прямоугольника, то ясно, что образовавшаяся пустота, с одной стороны, равна С в квадрате, а с другой — А+В, т. е. С=А+В. Теорема доказана.

Математики Древней Индии заметили, что для доказательства теоремы Пифагора достаточно использовать внутреннюю часть древнекитайского чертежа. В написанном на пальмовых листьях трактате «Сид-дханта широмани» («Венец знания») крупнейшего индийского математика XII века в Бхаскары помещен чертеж с характерным для индийских доказательств словом «смотри!». Прямоугольные треугольники уложены здесь гипотенузой наружу и квадрат С перекладывается в «кресло невесты» квадрат А плюс квадрат В. Частные случаи теоремы Пифагора встречаются в древнеиндийском трактате «Сульва сутра» (VII–V веках до нашей эры).

Доказательство Евклида приведено в предложении 1 книги «Начал». Здесь для доказательства на гипотенузе и катетах прямоугольного треугольника строятся соответствующие квадраты.

«Багдадский математик и астроном X века ан-Найризий (латинизированное имя — Аннариций), — пишет Волошинов, — в арабском комментарии к „Началам“ Евклида дал следующее доказательство теоремы Пифагора. Квадрат на гипотенузе разбит у Аннариция на пять частей, из которых составляются квадраты на катетах. Конечно, равенство всех соответствующих частей требует доказательства, но мы его за очевидностью оставляем читателю. Любопытно, что доказательство Аннариция является простейшим среди огромного числа доказательств теоремы Пифагора методом разбиения: в нем фигурирует всего 5 частей (или 7 треугольников). Это наименьшее число возможных разбиений».

ЕВКЛИДОВА ГЕОМЕТРИЯ

Геометрия, как и другие науки, возникла из потребностей практики. Само слово «геометрия» греческое, в переводе означает «землемерие».

Люди очень рано столкнулись с необходимостью измерять земельные участки. Это требовало определенного запаса геометрических и арифметических знаний. Постепенно люди начали измерять и изучать свойства более сложных геометрических фигур.

«По дошедшим до нас египетским папирусам и древневавилонским текстам видно, что уже за 2 тысячи лет до нашей эры люди умели определять площади треугольников, прямоугольников, трапеций, приближенно вычислять площадь круга, — пишет И. Г. Башмакова. — Они знали также формулы для определения объемов куба, цилиндра, конуса, пирамиды и усеченной пирамиды. Сведения по геометрии вскоре стали необходимы не только при измерении земли. Развитие архитектуры, а несколько позднее и астрономии предъявило геометрии новые требования. И в Египте и в Вавилоне сооружались колоссальные храмы, строительство которых могло производиться только на основе предварительных расчетов…И все же, несмотря на то, что человечество накопило такие обширные знания геометрических фактов, геометрия как наука еще не существовала.

  104