ОСНОВЫ МИРОЗДАНИЯ
ЗАКОН АРХИМЕДА
Архимед (287 до н. э. — 212 до н. э.) родился в греческом городе Сиракузы, где и прожил почти всю свою жизнь. Отцом его был Фидий, придворный астроном правителя города Гиерона. Учился Архимед, как и многие другие древнегреческие ученые, в Александрии, где правители Египта Птолемеи собрали лучших греческих ученых и мыслителей, а также основали знаменитую, самую большую в мире библиотеку.
После учебы в Александрии Архимед вновь вернулся в Сиракузы и унаследовал должность своего отца.
В теоретическом отношении труд этого великого ученого был блистателен. Основные работы Архимеда касались различных практических приложений математики (геометрии), физики, гидростатики и механики. В сочинении «Параболы квадратуры» Архимед обосновал метод расчета площади параболического сегмента, причем сделал это за две тысячи лет до открытия интегрального исчисления. В труде «Об измерении круга» Архимед впервые вычислил число «пи» — отношение длины окружности к диаметру — и доказал, что оно одинаково для любого круга. Мы до сих пор пользуемся придуманной Архимедом системой наименования целых чисел.
Любопытен отзыв Цицерона, великого оратора древности, увидевшего «архимедову сферу» — модель, показывающую движение небесных светил вокруг Земли: «Этот сицилиец обладал гением, которого, казалось бы, человеческая природа не может достигнуть».
Архимед проверяет и создает теорию пяти механизмов, известных в его время и именуемых «простые механизмы». Это — рычаг («Дайте мне точку опоры, — говорил Архимед, — и я сдвину Землю»), клин, блок, бесконечный винт и лебедка.
Но Архимед знал также, что предметы имеют не только форму и измерение: они движутся, или могут двигаться, или остаются неподвижными под действием определенных сил, которые двигают предметы вперед или приводят в равновесие. Великий сиракузец изучал эти силы и изобретал новую отрасль математики, в которой материальные тела, приведенные к их геометрической форме, сохраняют в то же время свою тяжесть. Эта геометрия веса и есть рациональная механика, статика, а также гидростатика.
Учение о гидростатике Архимед развивает в труде «О плавающих телах». «Предположим, — говорит ученый, — что жидкость имеет такую природу, что из ее частиц, расположенных на одинаковом уровне и прилежащих друг к другу, менее сдавленные выталкиваются более сдавленными и что каждая из ее частиц сдавливается жидкостью, находящейся над ней по отвесу, если только жидкость не заключена в каком-нибудь сосуде и не сдавливается еще чем-нибудь другим». Полагаясь на это положение, Архимед математически доказывает, что следующие ниже «следствия» полностью объясняются с помощью приведенной гипотезы:
«1) Тела, равнотяжелые с жидкостью, будучи опущены в эту жидкость, погружаются так, что никакая их часть не выступает над поверхностью жидкости, и не будут двигаться вниз.
2) Тело, более легкое, чем жидкость, будучи опущено в эту жидкость, не погружается целиком, но некоторая часть его остается над поверхностью жидкости.
3) Тело, более легкое, чем жидкость, будучи опущено в эту жидкость, погружается настолько, чтобы объем жидкости, соответствующий погруженной (части тела), имел вес, равный весу всего тела.
4) Тела, более легкие, чем жидкость, опущенные в эту жидкость насильственно, будут выталкиваться вверх с силой, равной тому весу, на который жидкость, имеющая равный объем с телом, будет тяжелее этого тела.
5) Тела, более тяжелые, чем жидкость, опущенные в эту жидкость, будут погружаться, пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела».
Пункт 5 содержит фактически общеизвестный закон Архимеда, открытие которого позволило ему, согласно преданию, осуществить проверку состава короны сиракузского царя Гиерона. Знаменитый рассказ о первом практическом применении Закона Архимеда приведен у древнеримского автора Витрувия в его труде «Об архитектуре»:
«…Исходя из своего открытия, он, говорят, сделал два слитка, каждый такого же веса, какого была корона, — один из золота, другой из серебра. Сделав это, он наполнил водой сосуд до самых краев и опустил в него серебряный слиток, и вот, какой объем слитка был погружен в сосуд, соответственное ему количество вытекло воды. Вынув слиток, он долил в сосуд такое количество воды, на какое количество стало там ее меньше, отмеряя вливаемую воду секстарием, чтобы, как и прежде, сосуд был наполнен водой до самых краев. Так отсюда он нашел, какой вес серебра соответствует какому определенному количеству воды.