Непер с самого начала вводил понятие логарифма для всех значений непрерывно меняющихся тригонометрических величин — синуса и косинуса. При тогдашнем состоянии математики, когда еще не было аналитического аппарата исчисления бесконечно малых, естественным и единственным средством для этого являлось кинематическое определение логарифма. Быть может, здесь не остались без влияния и традиции, восходившие к оксфордской школе XIV века».
В основе определения логарифма у Непера лежит кинематическая идея, обобщающая на непрерывные величины связь между геометрической профессией и арифметической прогрессией показателей ее членов.
Теорию логарифмов Непер изложил в сочинении «Построение удивительных таблиц логарифмов», посмертно опубликованном в 1619 году и переизданном в 1620 году его сыном Робертом Непером. Вот выдержки из нее:
«Таблица логарифмов — небольшая таблица, с помощью которой можно узнать посредством весьма легких вычислений все геометрические размеры и движения. Она по справедливости названа небольшой, ибо по объему превосходит таблицы синусов, весьма легкой, потому что с ее помощью избегают всех сложных умножений, делений и извлечений корня, и все вообще фигуры и движения измеряются посредством выполнения более легких сложения, вычитания и деления на два. Она составлена из чисел, следующих в непрерывной пропорции.
16. Если из полного синуса с добавленными семью нулями ты вычтешь его 10000000-ую часть, а из полученного таким образом числа — его 10000000-ую часть и так далее, то этот ряд можно легко продолжить до ста чисел в геометрическом отношении, существующем между полным синусом и синусом, меньшим его на единицу, а именно между 10000000 и 9999999, и этот ряд пропорциональных мы назовем Первой таблицей.
17. Вторая таблица следует от полного синуса с шестью добавленными нулями через пятьдесят других чисел, пропорционально убывающих в отношении, которое является простейшим и возможно более близким к отношению между первым и последним числами Первой таблицы.
Поскольку первое и последнее числа Первой таблицы суть 10000000.0000000 и 9999900.004950, то в этом отношении трудно образовать пятьдесят пропорциональных чисел. Близким и в то же время простым отношением является 100000 к 99999, которое можно с достаточной точностью продолжить, добавив к полному синусу шесть нулей и последовательно вычитая из предшествующего его 100000-ую часть. Эта таблица содержит, кроме полного синуса, являющегося первым числом, еще пятьдесят пропорциональных чисел, последнее из которых (если ты не ошибешься) будет 9995001.222927.
18. Третья таблица состоит из шестидесяти девяти столбцов и в каждом столбце расположено двадцать одно число, следующее в отношении, которое является простейшим и возможно более близким к отношению, существующему между первым и последним членами Второй таблицы.
Поэтому ее первый столбец может быть очень легко получен из полного синуса с пятью добавленными нулями и из последующих чисел вычитанием из них 2000-ой части.
19. Первые числа всех столбцов следуют от полного синуса с добавленными четырьмя нулями в отношении, которое является простейшим и близким к отношению, существующему между первым и последним числами первого столбца…
20. В том же отношении должна быть образована прогрессия со второго числа первого столбца для вторых чисел всех столбцов, и с третьего для третьих, и с четвертого для четвертых, и соответственно с остальных для остальных.
Таким образом, из любого числа предыдущего столбца вычитанием его сотой части получается число того же порядка следующего столбца…
21…. этих трех таблиц (после их составления) достаточно для вычисления таблицы логарифмов».
В 1620 году швейцарец Иост Бюрги (1552–1632) — высококвалифицированный механик и часовых дел — мастер опубликовал книгу «Таблицы арифметической и геометрической прогрессий, вместе с основательным наставлением, как их нужно понимать и с пользой применять во всяческих вычислениях» (1620).
Как писал сам Бюрги, он исходил из соображений о соответствии между умножением в геометрической прогрессии и сложением в арифметической. Задача состояла в выборе прогрессии со знаменателем, достаточно близким к единице, с тем, чтобы ее члены следовали друг за другом с интервалами, достаточно малыми для практических вычислений.
Однако таблицы Бюрги не получили значительного распространения. Они не могли конкурировать с таблицами Непера, более удобными и к тому времени уже широко известными.