Роберт Юлий Майер (1814–1878) родился в Гейльбронне в семье аптекаря. По окончании средней школы Майер поступил в Тюбингенский университет на медицинский факультет. Здесь он не слушал математических и физических курсов, но зато основательно изучил химию у Гмелина. Закончить университет в Тюбингене без перерыва ему не удалось. За участие в запрещенной сходке он был арестован. В тюрьме Майер объявил голодовку и на шестой день после ареста был освобожден под домашний арест. Из Тюбингена Майер уехал в Мюнхен, затем в Вену. Наконец, в январе 1838 года ему разрешили вернуться на родину. Здесь он сдал экзамены и защитил диссертацию.
Вскоре Майер принял решение поступить на голландский корабль, отправляющийся в Индонезию, в качестве судового врача. Это путешествие сыграло важную роль в его открытии. Работая в тропиках, он заметил, что цвет венозной крови у жителей жаркого климата более яркий и алый, чем темный цвет крови у жителей холодной Европы. Майер правильно объяснил яркость крови у жителей тропиков: вследствие высокой температуры организму приходится вырабатывать меньше теплоты. Ведь в жарком климате люди никогда не мерзнут. Поэтому в жарких странах артериальная кровь меньше окисляется и остается почти такой же алой, когда переходит в вены.
У Майера возникло предположение: не изменится ли количество теплоты, выделяемое организмом, при окислении одного и того же количества пищи, если организм, помимо выделения теплоты, будет еще производить работу? Если количество теплоты не изменяется, то из одного и того же количества пищи можно получить то больше, то меньше тепла, так как работу можно превратить в тепло, например, путем трения.
Если количество теплоты изменяется, то работа и теплота обязаны своим происхождением одному и тому же источнику — окисленной в организме пище. Ведь работа и теплота могут превращаться одна в другую. Эта идея сразу дала возможность Майеру сделать ясным и загадочный опыт Гей-Люссака.
Если теплота и работа взаимно превращаются, то при расширении газов в пустоту, когда он не производит никакой работы, так как нет никакой силы давления, противодействующей увеличению его объема, газ и не должен охлаждаться. Если же при расширении газа ему приходится производить работу против внешнего давления, то его температура должна понижаться. Но если теплота и работа могут превращаться друг в друга, если эти физические величины сходные, то возникает вопрос о соотношении между ними.
Майер попытался узнать: сколько требуется работы для выделения определенного количества теплоты и наоборот? К тому времени было известно, что для нагревания газа при постоянном давлении, когда газ расширяется, нужно больше тепла, чем для нагревания газа в замкнутом сосуде. То есть что теплоемкость газа при постоянном давлении больше, чем при постоянном объеме. Эти величины были уже хорошо известны. Но установлено, что обе они зависят от природы газа: разность между ними почти одинакова для всех газов.
Майер понял, что эта разность в теплоте обусловлена тем, что газ, расширяясь, совершает работу. Работу одного моля расширяющегося газа при нагревании на один градус определить нетрудно. Любой газ при малой плотности можно считать идеальным — его уравнение состояния было известно. Если нагреть газ на один градус, то при постоянном давлении его объем возрастет на некую величину.
Таким образом, Майер нашел, что для любого газа разность теплоемкости газа при постоянном давлении и теплоемкости газа при постоянном объеме есть величина, называемая газовая постоянная. Она зависит от молярной массы и температуры. Теперь это уравнение носит его имя.
Одновременно с Майером и независимо от него закон сохранения и превращения энергии разрабатывался Джоулем и Гельмгольцем.
Механический подход Гельмгольца, который он сам был вынужден признать узким, дал возможность установить абсолютную меру для «живой силы» и рассматривать всевозможные формы энергии либо в виде кинетической («живых сил»), либо потенциальной («сил напряжения»).
Количество превращенной формы движения можно измерить величиной той механической работы, например, по поднятию груза, которую можно было бы получить, если целиком все исчезнувшее движение затратить на это поднятие. Экспериментальное обоснование принципа и заключается, прежде всего, в доказательстве количественной определенности этой работы. Этой задаче и были посвящены классические опыты Джоуля.